
Caching Function Calls Using Precise Dependencies

Allan Heydon Roy Levin Yuan Yu

Compaq Computer Corporation
Systems Research Center

130 Lytton Avenue
Palo Alto, CA 94301, USA

caheydon@yahoo.com, levin@pa.dec.com, yuanyu@pa.dec.com

Abstract

This paper describes the implementation of a purely func-
tional programming language for building software systems.
In this language, external tools like compilers and linkers are
invoked by function calls. Because some function calls are
extremely expensive, it is obviously important to reuse the
results of previous function calls whenever possible. Caching
a function call requires the language interpreter to record
all values on which the function call depends. For opti-
mal caching, it is important to record precise dependencies
that are both dynamic and fine-grained. The paper sketches
how we compute such dependencies, describes the imple-
mentation of an efficient function cache, and evaluates our
implementation’s performance.

1 Introduction

We consider the problem of implementing a pure functional
language in which some function calls are expected to be
extremely costly. This problem arises in the context of the
Vesta software configuration management system, a system
for managing and building potentially large-scale software
[6, 13]. As an integrated version control and build system,
Vesta provides several advantages over traditional version
control systems like RCS and CVS, and over the build pro-
gram Make. These advantages include strong support for
parallel development by multiple developers, support for
easily specifying build customizations, and guarantees that
all builds produce correct results and are reproducible at
any time in the future.

In Vesta, the instructions for building software artifacts
take the form of programs written in a functional system
modeling language. Conceptually, these programs describe
how to build a system from scratch. When evaluated, such
programs may call functions that invoke external tools such
as compilers and linkers, the net results of which are typi-
cally returned as part of the evaluation result. Invocations of
external tools account for the vast majority of the time spent
building a software artifact, so it is obviously crucial to reuse
results from previous builds whenever possible. However,

tool invocations occur only at the leaves of an evaluation’s
function call graph. In a large build, testing whether it is
safe to reuse a previous result at each of these leaves might
require thousands or tens of thousands of checks, adversely
affecting incremental build performance.

To produce a system whose incremental build perfor-
mance scales to large software, we claim that it is therefore
important to reuse larger units of work than individual tool
invocations. The use of a functional language meshes well
with this goal because function calls make convenient units
of caching for later reuse. By using a cached function result
whenever it is safe to do so, unnecessary recompilations and
other work can be avoided. But when is it safe to reuse a
cached result? Only when the evaluation context at a candi-
date call site agrees with those parts of the context on which
some previous call to the same function depended.

When detecting dependencies, it is of course essential
not to omit any, or the cache would be unsound, sometimes
returning incorrect results. However, it is also important not
to err by introducing overly broad dependencies, or the cache
will be ineffective, sometimes failing to return a result when
it should. For the cache to be most effective, each function
call’s dependencies must be recorded as precisely as possible.
For example, consider the following simple function:

f(x, y, z) {
return (if x > 0 then y else z);

}

Because of the conditional expression, the arguments on
which this function depends vary dynamically from call to
call. For example, in the call f(1, 2, 3), the result depends
only on the values of x and y; the value of z is irrelevant.
Hence, the subsequent invocation f(1, 2, 7) in which the val-
ues of x and y are identical should produce a cache hit on
the first call.

In this particular example, the observant reader will no-
tice that the exact value of x is also unimportant. What
matters is simply whether or not x is positive. Hence, to
get the most accurate caching, dependencies should take
the form of predicates on values, not the exact values them-
selves. For now, we will assume that all dependencies are
recorded on values, but we describe how to represent more
general dependencies in Section 4 below.

The caching problem is further complicated when the
language includes composite value types. For example, let
[a = 1, b = 2] denote a record with two fields named a and
b, whose values are 1 and 2, respectively. For such a record
r, let the expression r.a denote the selection of the a field.
Now consider a slight modification to our previous example:

f(x, y, z) {
return (if x > 0 then y.a else z);

}

In this case, the result of the call f(1, [a = 2, b = 5], 3)
depends only on x and y.a. The subsequent call f(1, [a =
2, b = 9], 7) should produce a cache hit. Recording a depen-
dency on the entire record y would cause the second call to
get a false cache miss. This example demonstrates that the
dependencies calculated with respect to composite values
should be as fine-grained as possible.

From these two examples, we conclude that the Vesta
interpreter must compute fine-grain dependencies dynami-
cally (that is, during an evaluation). The challenges in ac-
curately implementing a caching scheme based on dynamic,
fine-grain dependencies are two-fold. First, algorithms must
be developed for representing, computing, and propagating
dynamic, fine-grained dependencies. We sketch the tech-
nique used by the Vesta interpreter in Section 4. Second,
due to the dynamic nature of the dependencies, it is im-
possible to compute a single cache key at a function call
site before the function has been evaluated. To handle this
problem, we divide the dependencies into two groups: the
primary dependencies, on which the function is known to
depend before the call is performed, and the secondary de-
pendencies, on which the function dynamically depends. In
Section 3, we describe how we organize the function cache
so as to perform lookups efficiently.

As mentioned above, the Vesta interpreter caches both
“higher level” user-defined functions and those that directly
invoke external tools. By caching user-defined functions, the
interpreter can get cache hits on larger units of work than
individual tool invocations; for example, on the construc-
tion of an entire library archive. These higher-level cache
hits make the cost of an incremental build proportional to
the amount of work to be performed, not to the size of the
system being built. As a result, Vesta’s incremental build
performance scales well to large software systems, a trait
that is not shared by other software construction tools such
as Make [4]. We demonstrate the effectiveness of Vesta’s
higher-level caching in Section 5.

2 System Modeling Language

Before describing our caching and dependency calculation
algorithms, we first sketch the main features of Vesta’s sys-
tem modeling language.

Vesta’s build language is a full-fledged programming lan-
guage that is functional (that is, side-effect free), modular,
dynamically typed, and lexically scoped. Its value space
contains booleans, integers, text strings, lists, closures, and
bindings. The first four data types are the familiar ones
from Algol-like languages and LISP. Closures are first-class,
higher-order functions that can be nested. Bindings are
described below. The language contains about 60 built-in
functions for arithmetic and boolean operations, for basic
manipulations of texts, lists, and bindings, and for invoking
external tools. Overall, these core language facilities were
designed to be as basic and “methodology neutral” as possi-
ble so that support for particular styles of system construc-
tion or organization could be programmed in the language,
rather than being built-in to the language or interpreter.
The complete language syntax and semantics are described
elsewhere [5].

For the purposes of this paper, two features of the mod-
eling language are noteworthy: the binding type and the
runtool primitive.

Bindings are like records, except that the list of fields in
a binding can be dynamically extended at runtime. Con-
ceptually, bindings are functions mapping texts to values.
Bindings are constructed using a square bracket notation
and may be nested, as in [f = 1, g = [a = 2, b = 3]]. The
field f of a binding b is selected by writing b/f ; it is a checked
runtime error to select a nonexistent field. The boolean ex-
pression b!f is true if and only if the field f is defined in
b.

Bindings are used extensively in Vesta system models.
They are convenient for representing both build customiza-
tions (for example, [debug = “-g”, opt = “-O2”]) and nested
file directories, in which the “leaves” of the binding associate
file names with file contents. (In fact, it was this latter usage
that inspired the choice of “/” for the binding selection oper-
ator.) In our system models, both build customizations and
file directories are stored together in one composite binding
called the environment. The use of an environment bind-
ing allows build customizations affecting the entire build or
selected parts of the build to be specified once at a high
level. For the environment to have this effect, the environ-
ment binding is passed as a parameter to every function call.
Almost all functions depend on selected parts of the environ-
ment, so recording fine-grain dependencies on this binding
is crucial.

The language includes several primitives for combining
bindings. One of these is the binary overlay (+) operator,
defined by:

(b1 + b2)/n = if b2!n then b2/n else b1/n

This operator merges two bindings, giving precedence to the
second binding wherever both define the same name. It can
be used to override a default set of build options with user-
supplied customizations. For example, the following state-
ment augments the build options to specify that compilation
should produce debugging symbols:

options = options + [debug = "-g"];

There are two classes of function calls in the Vesta mod-
eling language: calls of the built-in runtool primitive, which
is used to invoke external tools, and calls of user-defined
functions.

Calls of the runtool primitive are treated specially. The
techniques used to implement it are beyond the scope of
this paper, but we sketch them briefly here. The runtool
implementation is a cooperative process between the Vesta
interpreter and the Vesta repository, which stores all of the
versioned sources, tools, and libraries in the system. For
maximum extensibility, the Vesta interpreter has no built-in
knowledge of any of the tools it invokes. Given a command
line and an evaluation environment as arguments, the run-
tool primitive simply invokes the tool given in the command
line on the given arguments. The environment contains a
binding that defines the file system in which the tool is to
be run. Vesta arranges that the tool (including any child
processes it forks) has access to only the files in this file
system, and that all its file references are detected by the
repository and reported back to the interpreter. The inter-
preter then records these references as dependencies on the
environment.

Although runtool caching is certainly important for in-
cremental build performance, this paper focuses on effec-
tively caching user-defined functions, which often represent
larger units of work in the function call graph.

3 Efficient Caching

The interpreter and function cache use fingerprints to rep-
resent the cache keys. A fingerprint is a fixed-size hash of
an arbitrary byte sequence [3, 10]. Fingerprints come with a
mathematical guarantee bounding the probability of a col-
lision; by choosing long enough fingerprints, the probability
of a collision can be made vanishingly small1. As a result,
fingerprints can be used as a basis for equality tests, since
we can safely assume that FP (a) = FP (b) ⇐⇒ a = b.
Two operations supported on fingerprints are extending a
fingerprint by more bytes and extending a fingerprint by
another fingerprint. In the latter case, we write fp1 ⊕ fp2 to
denote the result of extending fp1 by fp2. The ⊕ operation
is non-commutative.

As described previously, the dependencies for each func-
tion call are divided into two groups, primary and secondary.
The primary dependencies are determined at the call site,
before the function is evaluated. The primary dependen-
cies normally include the body of the function being in-
voked and the values of the function’s arguments that are
of scalar types.2 From the primary dependencies, the inter-
preter computes a primary cache key by fingerprinting the
body of the function being invoked, then extending it by the
fingerprints of the relevant argument values.

The secondary cache key also uses fingerprints, but it
takes a different form, namely, a set of name-value pairs
in which no name occurs more than once. The secondary
key represents the names on which the function dynamically
depends, as well as the values of those names in the evalua-
tion context. Since the only operation required on the val-
ues when performing a cache lookup is testing for equality,
the values can be represented in the cache by fingerprints,
thereby saving both space and time. The fingerprints of file
values are supplied by the Vesta repository3; the fingerprints
of all other values are computed by the interpreter.

To make the concepts of primary and secondary keys
more concrete, consider the call of a user-defined compile
function for compiling a single C source file:

compile("test.c", env);

Here, env is a binding that contains a representation of
a filesystem in which the compilation is performed. The
primary key for this call is the fingerprint of the compile
function’s body combined with the fingerprint of the literal
test.c. The secondary key will contain the names of all
parts of the env binding referenced during the function eval-
uation, together with the fingerprints of the corresponding
values. For example, the names in the secondary key might
include:

env/usr/lib/cmplrs/cc
env/test.c
env/usr/include/stdio.h
env/options/debug

1For safety, Vesta uses 128-bit fingerprints, making the probability
of a collision much less than 1 in 280.

2Including argument values among the primary dependencies is a
heuristic; strictly speaking, until the function is evaluated, we do not
know whether it will depend on these arguments. The interpreter
accepts pragmas to modify this heuristic; see Section 4.6.2.

3Whenever a file changes, the repository computes a new finger-
print for it. The fingerprint of a small file is computed from the file’s
contents; the fingerprint of a large file is computed by fingerprint-
ing the file’s unique identifier. The threshold for distinguishing small
files from large files is a configuration parameter that defaults to 1
megabyte.

Once the primary key has been computed, the question
that immediately arises is how to perform a cache lookup.
Due to the dynamic nature of the secondary dependencies,
there is no way to know a priori what the dependencies will
be without evaluating the function. But obviously, if we had
to evaluate a function before we could look up its value in
the cache, the cache would be useless.

The way around this chicken-and-egg problem is for the
function cache to group entries by primary key. The in-
terpreter and cache then cooperate to search through the
appropriate group for an entry whose secondary dependen-
cies match the current context. Using this idea, the lookup
operation becomes a four-step process:

1. The interpreter computes a primary key pk and com-
municates it to the function cache.

2. The function cache examines all of the cache entries
with primary key pk, and returns to the interpreter
the union of all names in their associated secondary
keys.

3. The interpreter computes (the fingerprints of) the val-
ues associated with those names in the current evalu-
ation context, and sends them to the function cache.

4. The cache again examines the entries with primary
key pk, and checks to see if any have secondary keys
matching the values in the current context. If so, a
cache hit occurs, the cached function result is returned,
and the interpreter skips the function evaluation.

If the evaluation of a function is deterministic, and if the
dependencies recorded for all evaluations of that function
are complete, then the cached result returned in the event
of a cache hit will be the same as the result that would be
produced by actually evaluating the function. Of course,
it is quite possible to invoke external tools that produce
nondeterministic results (such as the Unix date program).
In practice, however, all of the tools we have used (mainly
compilers and linkers) are sufficiently deterministic to pro-
duce reliable caching behavior. For example, the standard
C compiler writes a timestamp into each object file it gener-
ates, but this nondeterminism does not prevent a previously-
written object file from being safely reused at a later time.

We now consider the question of how best to organize en-
tries in the cache so as to efficiently implement steps 2 and 4
of the lookup algorithm. As mentioned, cache entries shar-
ing the same primary key are grouped together. In practice,
however, there might be hundreds of such entries. For exam-
ple, if the primary key corresponds to compiling a particular
source file, there will be a new cache entry created each time
a different version of the file is compiled. Moreover, it is not
atypical for cache entries themselves to have hundreds of
name-value pairs in their secondary keys. Considering the
compilation example again, each file that is accessed during
the compilation is a secondary dependency. Hence, even if
the entries with a given primary key could be easily enumer-
ated, a naive implementation of the lookup algorithm might
require tens of thousands of fingerprint comparisons.

To avoid this problem, cache entries are organized in a
two-level hierarchy. First, all entries with the same primary
key are grouped together. Then the entries in each group are
partitioned in such a way that only a subset of the entries
in each group need be examined on any lookup.

To explain how this partitioning is done, we introduce
some notation. For any cache entry e, let e.pk denote e’s

primary key, let e.names denote the set of names in e’s sec-
ondary key, and for any name n ∈ e.names, let e.val(n) de-
note the fingerprint value associated with n in e’s secondary
key. Now define the following:

Entries(pk) = {e | e.pk = pk}
AllNames(pk) =

⋃

e∈Entries(pk)

e.names

CommonNames(pk) =
⋂

e∈Entries(pk)

e.names

CFP(e) =
⊕

n∈CommonNames(e.pk)

e.val(n)

The set CommonNames(pk) thus consists of those names
that occur in every cache entry with the given primary key.
The names in AllNames(pk) \ CommonNames(pk) occur in
some cache entries with the given primary key but not oth-
ers; we call them uncommon. The value CFP(e), e’s com-
mon fingerprint, is the result of combining the fingerprints
of all secondary values of e corresponding to e.pk’s common
names. Due to the non-commutative nature of the ⊕ oper-
ation, it is important to enumerate the names n in a well-
defined order. To this end, the function cache maintains a
canonical ordering for each pk of the names in AllNames(pk);
it uses that ordering when computing CFP(e).

Given these definitions, we can now describe how the
cache implements steps 2 and 4 of the lookup algorithm.
For each primary key pk, the cache maintains Entries(pk),
AllNames(pk), and CommonNames(pk) (the last of which is
represented by a bit vector with respect to AllNames(pk)).
In step 2 of the lookup algorithm, the cache simply returns
AllNames(pk) for the supplied primary key. To efficiently
perform step 4 of the lookup algorithm, the cache com-
putes CFP(e) for every entry e. It then groups the entries
Entries(pk) into equivalence classes according to their com-
mon fingerprints.

As an example, consider Figure 1, which shows the sec-
ondary names and values of four cache entries sharing a
primary key. Each column is a different cache entry, and
the circled letters correspond to different fingerprint values.
The absence of a fingerprint in row i and column j means
that name i is not in the secondary dependency set of the
entry for column j. The entries shown could correspond to
invocations of a C compiler on a source file named test.c.

In this example, only the names env/usr/lib/cmplrs/cc
and env/test.c are referenced by all four cache entries, so
those are the only two names in CommonNames(pk). Fig-
ure 2 shows the CFP(e) fingerprints that might be computed
for these entries; notice that CFP(e3) = CFP(e4) because
the values associated with the common names agree on those
two entries. The entries are then arranged in a hierarchy as
shown in Figure 3; the top two levels of the hierarchy are
implemented using hash tables. All of the entries sharing
the same primary key and common fingerprint are said to
belong to the same cfp-group.

In step 4 of the lookup operation, the cache is given
a pk and the fingerprints f1, f2, . . . , fk of the values corre-
sponding to the names AllNames(pk) at the call site. Call
these fingerprints fi the call site fingerprints. To perform the
lookup, the cache first combines those call site fingerprints
associated with CommonNames(pk), thereby producing a
common fingerprint cfp. Next, the cache does a hash table

1 2 3 4

A A A A

B

C C

D E E

F G

Secondary Names

env/usr/lib/cmplrs/cc

env/test.c

env/usr/include/stdio.h

env/defs.h

Entries

Figure 1: The secondary names and values of four cache
entries sharing the same primary key.

1 2 3 4

A A A A

B

C C

D E E

F G

Secondary Names

env/usr/lib/cmplrs/cc

env/test.c

env/usr/include/stdio.h

env/defs.h

Entries

X Y Z ZCFP(e)

Figure 2: The common fingerprints computed for the cache
entries of Figure 1. Here, X = A ⊕ B, Y = A ⊕ D, and
Z = A ⊕ E.

lookup to see if pk has cfp as one of its associated common
fingerprints. If not, the cache reports a miss. Otherwise,
the cache examines the entries in the identified cfp-group.
In testing for a hit, only the uncommon names need be ex-
amined, since by virtue of being in the correct cfp-group, all
entries being considered are known to have matching values
for the common names.

This lookup algorithm results in two major cost savings
compared to the brute-force algorithm. First, only those en-
tries in the identified cfp-group need be examined. In prac-
tice, the cfp-groups tend to be quite small (often containing
only one entry), so this produces a major saving. Second,
when examining the entries in a cfp-group, only the values
associated with the uncommon names need be examined.
In our experience, the fraction of names that are uncommon
tends to be quite low, averaging only a few percent. These
two effects thus drastically reduce the number of fingerprint
comparisons required to perform a cache lookup.

When a new entry is added to the set Entries(pk),
the sets AllNames(pk) and CommonNames(pk) can change.
Since changes to the latter would require common finger-
prints to be recomputed and cache entries to be reorganized,
newly added entries are kept in two side buffers (one for en-
tries that have all of the common names, and one for those

P Q R S T

X Y Z

1 2 3 4

Cache

PKs

CFPs

Entries

Figure 3: The hierarchical arrangement of the cache entries
first by primary key, and then by common fingerprint for
the entries of Figure 2.

e ::=
| a literal (a ∈ Literal)
| x variable (x ∈ Id)
| λx.e lambda
| if e1 then e2 else e3 conditional
| [n1 = e1, n2 = e2, ..., nk = ek] binding constructor
| e/n binding selection
| e!n binding domain test
| e1 + e2 binding overlay
| let x = e1 in e2 let construct
| e1(e2) function application

Table 1: The syntax for a subset of our system modeling language.

that do not). The lookup algorithm must consult these side
buffers in addition to checking for a hit in Entries(pk). Once
a large enough number of new entries are collected, they are
merged into Entries(pk) together, thereby amortizing the
cost of recomputing all of the common fingerprints. The
details of this update process are beyond the scope of this
paper.

In Vesta, the function cache is implemented by a per-
sistent, fault-tolerant server process. The Vesta interpreter
communicates with the cache over a local network via RPC.
This design has two obvious advantages. First, the cache
process can be run on a powerful server machine for bet-
ter performance. Second, since developers at the same site
share the same function cache, they can benefit from each
other’s builds.

4 Computing Dependencies

In this section we consider how to calculate dependencies for
the Vesta language. The interpreter computes dependencies
dynamically during an evaluation. This section gives the
mathematical rules we have developed for computing de-
pendencies. It also states (but does not prove) a correctness
theorem.

To describe the key ideas used in our dependency calcu-
lation, we define a subset of the Vesta modeling language [5].
Table 1 gives the subset language’s syntax. Here, Literal is
the set of literals, and Id is the set of identifiers. This subset
has been chosen to include the core parts of the Vesta lan-
guage that present the most significant challenges to effec-
tive dependency analysis. It omits the language’s primitive
functions (of which there are approximately 60), its itera-
tion construct, its provisions for importing one system model
from another, and its support for binding program variables
to versioned directories and files in the Vesta repository.

Every expression is evaluated in some evaluation con-
text, which is a mapping from variable names to values. Let
Eval(e, c) denote the result of evaluating the expression e
in the context c, and let Dpnd(e, c) denote the dependency
information resulting from evaluating e in c. Since we use
standard call-by-value evaluation, the rules for Eval(e, c) are
straightforward, so we will not describe them here. The re-
mainder of this section describes the rules for computing
Dpnd(e, c).

4.1 Relation to Caching

As outlined in the previous section, when faced with a func-
tion invocation f(e1, e2, . . . , en), the interpreter first com-
putes a primary key from the function’s body and zero

or more of the argument values. In response to this pri-
mary key, the function cache returns a set of secondary
names. The cache treats the secondary names as mean-
ingless strings, but to the interpreter they represent depen-
dencies. The interpreter evaluates each of the secondary
names in the current context and sends the resulting list of
value fingerprints to the cache. The cache then tests for a
hit as previously discussed. In the event of a cache hit, the
interpreter uses the cached result value.

In the event of a cache miss, the interpreter proceeds to
evaluate the function on the given arguments. As it does
so, it represents each runtime value by a pair containing the
true value and the dependencies detected while computing
that value. Value-dependency pairs are also stored for any
sub-values nested inside composite values such as lists or
bindings. Once it has finished evaluating the function, the
interpreter collects up the dependencies in the function’s re-
sult value. Any dependencies that are not already part of
the primary key are considered part of the secondary key.
The interpreter then calls the function cache to create a new
cache entry with the computed primary key, secondary key,
and result value. It is important to note that the cached
result value, like all of the interpreter’s runtime values, it-
self is a pair that includes dependencies. Whenever a later
evaluation gets a hit on this entry, both the value and its
dependencies will be needed so that the dependency analysis
for subsequent uses of the value can proceed correctly.

For caching to be correct, the cache entries created by
the interpreter must satisfy a theorem, a formal statement
of which is given in Section 4.5 below. To understand the in-
tuition behind the theorem, imagine that the cache contains
an entry with primary key pk that resulted from evaluating
the expression e in a context c1. The secondary names asso-
ciated with this cache entry will be the set of dependencies
Dpnd(e, c1).

When attempting to evaluate e in another context c2,
the cache will produce a hit on the cached entry only if
the values computed in c2 for the dependencies Dpnd(e, c1)
match the values stored in the cache. Note that the values
associated with the dependencies in the cache are precisely
the values computed in c1 for Dpnd(e, c1).

We therefore define equivalence between two contexts
with respect to a set of dependencies d as follows:

Equiv(c1, c2, d) = (∀p ∈ d : Value(p, c1) = Value(p, c2)).

In this definition, Value(p, c) denotes the result of “evaluat-
ing” the dependency p in the context c. It corresponds to
the fingerprint associated with each secondary name in the
cache. (We define Value(p, c) for the particular dependencies
created by the interpreter in the next section.)

Type Dependency on the component’s . . . Computed Value
V . . .complete value Value(V : path, c) = Eval(path, c)
X . . .existence Value(X : path/id, c) = Eval(path!id, c)
D . . .domain Value(D : path, c) = {n | Eval(path!n, c)}
T . . .type Value(T : path, c) = Eval(typeof(path), c)
L . . .length (number of subcomponents) Value(L : path, c) = Eval(length(path), c)
E . . .expression (closures only) Value(E : path, c) = Eval(path, c).body

Table 2: The meanings of the six dependency types and the rules used by the interpreter to evaluate each type of path in a
context c.

Clearly, the cache hit will be correct if and only if per-
forming the evaluation of e in c2 would produce the same
result as the one stored in the cache, that is, Eval(e, c2) =
Eval(e, c1). Therefore, to prove our caching correct, we must
show that

Equiv(c1, c2, d) =⇒ Eval(e, c2) = Eval(e, c1).

The next section describes how the interpreter computes the
dependencies so as to satisfy this requirement.

4.2 Representing Dependencies

As mentioned in Section 1, dependencies in general are pred-
icates on the evaluation context. In a practical implemen-
tation, however, allowing for arbitrary predicates would be
costly in both space and time. We therefore use a small,
fixed collection of predicates, encoded as dependency paths.
It is these dependency paths that are passed to the func-
tion cache as the names in a cache entry’s secondary key.
The function Dpnd(e, c) evaluates to a set of such paths;
Section 4.3 below describes the rules for computing it.

The syntax of a dependency path is given by the follow-
ing grammar:

dpath ::= t :path
t ::= V | X | D | T | L | E

path ::= ε | id/path

A dependency path takes the form t :path, where t denotes
the dependency type, and path specifies the component of
the evaluation context on which the evaluation depends. We
use ε to denote an empty path; a path of the form id/ε is
equivalent to the path id.

The meanings of each of the interpreter’s six dependency
types are given in Table 2, along with the rules it uses to
compute Value(t : path, c), the value of the dependency path
t :path in the context c. The V (value) dependency type is
the strongest, and hence subsumes the other dependency
types. In this table, the language’s primitive typeof and
length functions compute the dynamic type of a value and
the length of a list or binding, respectively. The notation
cl.body denotes the closure cl’s body component.

4.3 Dependency Calculation Rules

We now give the mathematical rules for calculating de-
pendencies. We first define D(e, c, p) where p is a depen-
dency path; again, D(e, c, p) evaluates to a set of dependency
paths. We then define Dpnd(e, c) = D(e, c, V :ε). Intuitively,
D(e, c, p) is the dependency for just the portion of e’s value
that is selected by p. The definition of D(e, c, p) now pro-
ceeds by cases on the program structure:

• If e = a (a ∈ Literal), then D(e, c, t :p) = ∅. Evaluating
a constant has no dependency on the context.

• If e = x (x ∈ Id), then D(e, c, t :p) = {t : x/p}. Eval-
uating a variable x depends only on the dependency
path extended on the left by x.

• If e = λx.e1, only the following two cases arise:

D(e, c, V :ε) = FVs(e)
D(e, c, E :ε) = {}

where FVs(e) denotes the set of e’s free variables. In
both cases, the path must be empty. If the type of the
path is V , the lambda expression depends on the whole
closure value, that is, the set of e’s free variables. If the
type of the path is E, it depends on only the lambda
expression of the closure value, namely, the expression
e. Since e is incorporated into the primary key of every
function call whose body contains e, it is correct not
to record any dependencies in this case.

• If e = if e1 then e2 else e3, then we have the following
rule:

d1 = D(e1, c, V :ε)
v1 = Eval(e1, c)

d2 = if v1 then D(e2, c, t :p) else D(e3, c, t :p)

D(e, c, t :p) = d1 ∪ d2

This rule states that the dependency of a conditional
is the union of the dependencies of the guard e1 and
the dependency of either e2 or e3, depending on the
value of e1. We use an empty path in computing the
guard’s dependencies because the guard evaluates to a
boolean value that has no components.

• If e = [n1 = e1, n2 = e2, ..., nk = ek], there are two
cases to consider. If p is empty, it means that we
depend on the entire binding. If p = t :ni/p1, it means
that we depend only on the value of field ni. The
following rules cover the two cases:

D(e, c, t :ε) = ∪k
i=1D(ei, c, V :ε)

D(e, c, t :ni/p1) = D(ei, c, t :p1)

• If e = e1/n, then D(e, c, t :p) = D(e1, c, t :n/p). For
binding selection, we recursively call D with the path
extended on the left by n.

• If e = e1!n, then D(e, c, t :p) = D(e1, c, X :n/p). For
the binding domain test, we recursively call D with
the path extended on the left by n. Note that the new
dependency path has type X, regardless of the type t.

• If e = e1 + e2, then there are two cases to consider:
If p is empty, it means that we depend on the entire
binding. If p = t : n/p1, it means that we depend

only on the binding that supplies the n field. In the
case that the n field comes from e1, we must add the
dependency that n is not defined in e2. The following
rules cover the two cases:

D(e, c, t :ε) =

D(e1, c, V :ε) ∪ D(e2, c, V :ε)

D(e, c, t :n/p1) =

if Eval(e2!n, c)

then D(e2, c, t :n/p1)

else D(e2, c, X :n) ∪ D(e1, c, t :n/p1)

• If e = let x = e1 in e2, then

c1 = c ◦ {x → Eval(e1, c)}
d2 = D(e2, c1, t :p)

d2a = {p′ | p′ ∈ d2 ∧ head(p′) 6= x}
d2b = {t′ :p′ | t′ :x/p′ ∈ d2}

D(e, c, t :p) = d2a

⋃∪p′∈d2b
D(e1, c, p′)

where ◦ denotes the operation for extending a context,
and head(p) denotes the first element of p’s path. We
first augment the evaluation context with x mapped
to Eval(e1, c) and compute d2 as the dependency of
e2 in the augmented context. We then divide the de-
pendency paths in d2 into two sets d2a and d2b. The
set d2a contains paths unrelated to x. So, d2a must
be included in the result. The set d2b contains paths
starting with x. So, we need to recursively compute
D(e1, c, p

′) for each path p′ in d2b.

• If e = e1(e2), then

Eval(e1, c) =< λx.e3, c3 >
d1 = D(e1, c, E : ε)

c1 = c3 ◦ {x → Eval(e2, c)}
d3 = D(e3, c1, t :p)

d3a = {p′ | p′ ∈ d3 ∧ head(p′) 6= x}
d3b = {t′ :p′ | t′ :x/p′ ∈ d3}
D(e, c, t :p) = d1

⋃
(∪p′∈d3a

D(e1, c, p
′))

⋃
(∪p′∈d3b

D(e2, c, p
′))

This rule is similar to the rule for the let construct,
where e1 in the let expression is like the argument e2

here, and e2 in the let expression is like the closure
body e3 here.

4.4 Example

We now present a simple example to demonstrate the above
dependency rules. We compute the dependencies for the
expression:

e = let x = [r=[s=y], t=z] in x/r/s

in the context c. Obviously, Eval(e, c) = c(y). Here is the
start of the dependency calculation:

Dpnd(e, c)
≡ { definition of Dpnd }

D(e, c, V :ε)

Since the expression e is a let construct, the let rule applies.
The main step in calculating the dependencies for the let
construct involves calculating the dependency set named d2

in that rule, where e1 = [r = [s = y], t = z] and e2 = x/r/s.
Here we derive the value for d2, using c1 to denote the aug-
mented context c ◦ {x → Eval(e1, c)}:

D(x/r/s, c1, V :ε)
≡ { binding selection rule }

D(x/r, c1, V :s)
≡ { binding selection rule }

D(x, c1, V :r/s)
≡ { variable rule }

{ V :x/r/s }
From the dependency set d2, we compute the partitioned
sets d2a and d2b:

d2a = ∅
d2b = { V :r/s }

We can now continue computing Dpnd(e, c):

D(e, c, V :ε)
≡ { let rule }

∅ ∪ D([r=[s=y], t=z], c, V :r/s)
≡ { binding constructor rule }

D([s=y], c, V :s)
≡ { binding constructor rule }

D(y, c, V :ε)
≡ { variable rule }

{ V :y }
Hence, the evaluation of e in c depends only on the value of
y, as we would expect.

4.5 Correctness

The following theorem states the correctness of the depen-
dency calculation rules.

Theorem 1 (Caching Correctness) If the expression e
evaluates to a value v in the context c1, then we can compute
Dpnd(e, c1), and, if every path in Dpnd(e, c1) evaluates to
the same value in contexts c1 and c2, then e also evaluates
to v in c2. Formally,

(∃v : Eval(e, c1) = v) =⇒
(∃d : Dpnd(e, c1) = d)

∧ (Equiv(c1, c2,Dpnd(e, c1)) =⇒
Eval(e, c2) = Eval(e, c1))).

Before implementing the dependency algorithm, we for-
malized the above evaluation and dependency rules for this
subset of the Vesta language in the Nqthm theorem prover
[2], and mechanically checked the correctness theorem. The
proof is beyond the scope of this paper. It took several
iterations of running the prover and correcting our rules
before the mechanical proof succeeded. This proof effort
revealed a couple of subtle errors in earlier versions of the
rules. We then implemented the rules in the Vesta inter-
preter. Although we did not mechanically check the rules
for the complete Vesta language, the subset we did verify
covers the most complex aspects of the language, and so the
mechanical verification was quite useful.

4.6 Practical Considerations

A number of practical issues arise in the implementation of
the dependency calculation. Below, we briefly describe three
of the more interesting ones.

4.6.1 Runtool Caching

As a practical system modeling language, the Vesta lan-
guage provides a number of primitive functions. Except for
the runtool primitive, all of the other primitives can be han-
dled using mathematical rules similar the ones developed in
Section 4.3. The runtool primitive must be treated specially
because any dynamic dependencies that result from file sys-
tem references must be recorded during tool invocations.

Currently, we support two different kinds of file refer-
ences: lookup (looking up a name in a binding representing
a filesystem directory) and list (listing the entries in such
a filesystem binding). When a lookup succeeds, we record
a value (V) dependency on the file or directory it returns.
When a lookup fails, we record an existence (X) dependency
asserting the nonexistence of such an object. Finally, for a
list reference on a directory, we record a domain (D) depen-
dency on the names in that directory.

4.6.2 Primary Vs. Secondary Key

As mentioned earlier, we use the fingerprint of a closure’s
body as the basis for its primary key. Including none of the
arguments in the primary key would produce many cache
entries with the same primary key. That would cause cache
lookups to take longer, since there would be more entries
to search through for any given primary key—one for each
time the same function was invoked. Conversely, folding all
of the arguments into the primary key, as we have explained,
would produce cache entries that are too coarse-grained.

We have chosen a course between these two extremes.
We use a heuristic that folds the values of the simple argu-
ments (booleans, integers, and texts) into the primary key,
but does fine-grained dependency analysis on the composite
arguments (bindings, lists, and closures).

The Vesta language includes pragmas for overriding this
heuristic. None of the Vesta models written by end users
have required these pragmas. Their use has been limited
to the specialized “bridges” written by wizard users. These
bridges encapsulate the invocation of compilers and link-
ers, providing a less primitive interface than the one offered
by runtool. The typical bridge model contains less than 10
such pragmas. Although only a small number of pragmas
are required, their effect on performance can be noticeable,
especially as the number of cache entries increases. Impor-
tantly, pragmas impact performance only; their use cannot
produce incorrect caching behavior such as false cache hits.

4.6.3 Coarse-Grained Entries

When one function calls another, many dependencies of the
callee typically become dependencies of the caller. For ex-
ample, the function responsible for compiling a library ar-
chive will depend on the union of all of the header files on
which the compilations of the constituent source files de-
pend. Hence, if no special measures were taken, the root
function of an evaluation would have an extremely large
number of dependencies. This situation would make cache
lookup time proportional to the size of the system being
built, and therefore would prevent evaluation from scaling
well.

To prevent too many dependencies from being propa-
gated up to the root of an evaluation, we automatically iden-
tify some functions as special. In Vesta, these are typically
the functions responsible for building large components of a
system, such as entire library archives. In addition to the
normal fine-grained cache entries created for evaluations of

Source Source Runtool
Test Lines Files Calls
Hello 10 1 2
Interpreter 53,304 103 117
Release 119,602 255 333

Table 3: Properties of three source collections.

the special functions, the interpreter also creates cache en-
tries for these functions whose dependencies are more coarse-
grained. These special functions thus serve as cutoff points
in the function call graph, above which overly fine-grained
and bulky dependencies do not propagate.

5 Performance

In this section, we demonstrate that Vesta’s dependency and
caching algorithms perform well, and that it is important to
cache user-defined function calls in addition to runtool calls.

Table 3 summarizes three collections of source code used
for our measurements. The Hello test contains a single 10-
line “hello world” program. The Interpreter collection con-
sists of the code for the Vesta interpreter. The Release col-
lection contains the sources for a complete Vesta release.

We performed incremental builds of these three collec-
tions using Vesta and Make. In both cases, the builder was
run on a Digital AlphaStation 500 5/333, with a 333 MHz
Alpha 21064 CPU and 192MB of memory. The server pro-
cesses (the function cache and repository for the Vesta build,
and the NFS server for the Make build) were run on a Dig-
ital AlphaStation 400 4/233, with a 233 MHz Alpha 21064
CPU and 192MB of memory. These machines are now two
generations old, so we expect the absolute performance in
both the Vesta and Make cases would be substantially better
on modern hardware.

Figure 4 is a graph comparing the performance of Vesta
and Make on incremental builds of the three source collec-
tions. In each case, we modified a single source file, and then
measured the elapsed time to rebuild the system. Since only
a single source file was modified in each test, both Vesta and
Make performed exactly the same tool executions; the dif-
ferences shown in their performance are due entirely to the
time required by each system to decide what sources to re-
compile. Vesta is much faster than Make on the Interpreter
and Release tests because Vesta gets a high-level cache hit
on the call for building the (unmodified) libraries, whereas
Make has to stat hundreds of source, header, and object files
to ascertain that the libraries are up-to-date.

Time (secs)

Hello

3.3 3.4

Interpreter

12.5

23.3

Release

13.1

32.1

Vesta

Make

Figure 4: Incremental build performance of Vesta and Make
on the three source collections of Table 3.

Time (secs)

Hello

0.5 0.6

2.2

Interpreter

0.8 0.8

10.9

Release

1.1 1.3

10.7

Interpreter

Cache

Runtool

Figure 5: Elapsed time spent by various Vesta components
performing the incremental builds of Figure 4.

Time (secs)

Hello

3.3

11.5

Interpreter

12.5

21.3

Release

13.1

126

All Calls

Runtool Calls Only

Figure 6: Elapsed time spent performing Vesta incremental
builds when all calls are cached vs. when only runtool calls
are cached.

Figure 5 shows the overhead of performing the depen-
dency calculations and cache lookups in each of the incre-
mental Vesta builds of Figure 4. The time spent in the
interpreter computing dependencies and in the cache per-
forming lookups is minimal. On average, the two phases
of the cache lookup operation together take approximately
70 ms, and adding a new cache entry takes approximately
22 ms. The vast majority of the time is spent performing
runtool calls, that is, invoking the compiler and linker.

Since the tool invocations under Make take the same
amount of elapsed time as under Vesta, we conclude from
Figures 4 and 5 that in the Release test, Make spends fully
two-thirds of its time deciding which file to recompile. By
contrast, Vesta spends less than 20% of its time outside the
tool executions. We expect that as the software being built
gets larger, the differences will become even more extreme.

Finally, Figure 6 shows why it is so important to cache
calls of user-defined functions. The figure compares the
Vesta incremental build times of Figure 4 in which all func-
tion calls are cached to incremental builds in which only
runtool calls are cached. The latter numbers were produced
by running the interpreter in a mode in which it did fine-
grain dependency analysis on runtool calls, but absolutely
no other dependency analysis. When only runtool calls are
cached, the incremental build performance suffers greatly,
especially on the larger Release test. The main reason the
runtool-only case is so much slower is that many more cache
lookups are required in that case. When all calls are cached,
Vesta’s incremental build performance is proportional to the
scope of the change rather than the size of the system being
built.

Although we have not implemented a version of the inter-
preter that computes either coarse-grain or static dependen-
cies, our experience using the system suggests that so many
false cache misses on user-defined functions would occur that

the system’s performance would sink to the levels shown for
the runtool-only caching case in Figure 6. (In fact, the per-
formance would be even worse if coarse-grained dependen-
cies were recorded for runtool calls because then even some
tool invocations would be unnecessarily repeated.) This ef-
fect is due to the wide-spread use of the environment binding
in our models. Recording a coarse-grained dependency on
the environment would cause false cache misses throughout
the entire call graph whenever any part of the environment
was changed. This reasoning led us to conclude that record-
ing dynamic, fine-grain dependencies was critically impor-
tant if we wanted Vesta to exhibit good incremental build
performance.

6 Related Work

Memoization is a well-known technique for caching the re-
sults of function calls [7, 8]. Memoization is most effec-
tive when applied to recursive programs, particularly those
that use dynamic programming. For example, adding mem-
oization to the straightforward recursive computation of the
nth Fibonacci number changes the program’s time com-
plexity from exponential to linear. However, in standard
memoization, all of a function’s arguments are incorporated
into the cache key, and there are no dynamic dependencies.
This technique would produce cache entries that are far too
coarse-grained for our needs, resulting in costly and unnec-
essary cache misses. Pugh and Teitelbaum describe how to
better structure recursive computations so as to improve the
effectiveness of memoization when the arguments vary from
call to call in certain ways [9].

Program slicing is a technique for determining the parts
of a program that may contribute to some values of inter-
est [12, 14]. Computing the slice of a program affecting the
value of a variable v at a particular statement S involves
determining all statements and variables on which v’s value
at S depends. The algorithms in the literature do not admit
composite values, so the dependencies computed by tradi-
tional program slicing techniques are coarse-grained.

The work most closely related to ours is a paper by
Abadi, Lampson, and Lévy, which uses a labelled λ-calculus
to compute both dynamic and fine-grained dependencies [1].
Their approach is quite different from ours. It associates la-
bels with all expressions in a function body, and then devel-
ops rules for keeping the labels of only those expressions that
are evaluated during a call. As a result, it records only one
kind of dependency, analogous to our value dependencies.
Also, their calculus supports only the selection operation on
records. Computing dependencies for the binding operators
! and + complicates the problem significantly.

7 Conclusions

When interpreting a functional language in which some func-
tion calls may be extremely expensive, it is imperative for
good performance to perform only those function calls that
are absolutely necessary. One obvious approach is to cache
the results of each function call, and to perform a cache
lookup before executing any candidate call. In the event of
a cache hit, the cached result can be used directly.

As we have shown, accurately caching function calls re-
quires the interpreter to record precise dependencies that
are both dynamic and fine-grained. Otherwise, cache en-
tries are created that can produce false cache misses, caus-
ing unnecessary work to be performed. We have described

a technique for recording and propagating such precise de-
pendencies, and we have described a cache organization that
supports efficient lookup in the presence of such dependen-
cies.

The techniques described in this paper are an integral
part of the Vesta software configuration management sys-
tem. Vesta is now in daily use by a group of over 100 Com-
paq engineers designing the next-generation Alpha processor
[11]. They use Vesta to build simulators of the chip from
its RTL models. Despite the significant differences between
such hardware design tasks and standard software develop-
ment, Vesta has worked quite well for them. In fact, they
estimate that their use of Vesta instead of CVS (for ver-
sion control) and Make (for building) have put them 3 to 6
months ahead of schedule on the first phase of their project.
Analysis of the function call graphs produced from their in-
cremental builds shows that our precise dependency analysis
and caching is as effective for them as in our own use and
performance studies.

Acknowledgments

We wish to thank Mart́ın Abadi, Jim Horning, Butler Lamp-
son, and Tim Mann for helpful discussions related to this
work, Tim Mann and Marc Najork for their comments on
earlier drafts of the paper, and the anonymous PLDI referees
for their many helpful suggestions.

References

[1] Mart́ın Abadi, Butler Lampson, and Jean-Jacques
Lévy. Analysis and caching of dependencies. In Proceed-
ings of the 1996 ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’96), pages 83-
91. Association for Computing Machinery, May 1996.

[2] Robert S. Boyer and J Strother Moore. A Computa-
tional Logic Handbook. Academic Press. 1988.

[3] Andrei Broder. Some applications of Rabin’s finger-
printing method. In R. Capocelli, A. De Santis, and
U. Vaccaro, editors, Sequences II: Methods in Commu-
nications, Security, and Computer Science, pages 143–
152. Springer-Verlag, 1993.

[4] S. I. Feldman. Make — A program for maintaining com-
puter programs. Software — Practice and Experience,
9(4):255–265, April 1979.

[5] Allan Heydon, Jim Horning, Roy Levin, Timothy
Mann, Yuan Yu. The Vesta-2 Software Description
Language. Compaq Systems Research Center Techni-
cal Note 1997-005c, June, 1998.

[6] Allan Heydon, Roy Levin, Timothy Mann, Yuan Yu.
The Vesta Approach to Software Configuration Man-
agement. Compaq Systems Research Center Technical
Note 1999-001, June 22, 1999.

[7] John Hughes. Lazy Memo-Functions. Lecture Notes
in Computer Science, 201:129–146. Springer-Verlag,
Berlin, Sept. 1985.

[8] D. Michie. “Memo” Functions and Machine Learning.
Nature, 218:19–22, April, 1968.

[9] William Pugh and Tim Teitelbaum. Incremental Com-
putation via Function Caching. In Proceedings of the
Sixteenth Annual ACM Symposium on Principles of
Programming Languages (POPL ’89), pages 315–328,
January, 1989.

[10] M. O. Rabin. Fingerprinting by random polynomials.
Report TR–15–81, Department of Computer Science,
Harvard University, 1981.

[11] Matt Reilly. Designing an Alpha Microprocessor. IEEE
Computer, 32(1):27–34, Jan. 1999.

[12] Frank Tip. A Survey of Program Slicing Techniques.
Journal of Programming Languages, 3(3):121–189,
Sept. 1995.

[13] Vesta Home Page. http://www.research.compaq.com/-

SRC/vesta/.

[14] Mark Weiser. Program Slicing. IEEE Transactions on
Software Engineering, SE-10(4):352–357, July 1984.

