
1Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Writing Vesta Bridges

An Introduction to
Integrating New Tools and Tool Flows

into Vesta Builds

2Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Tools under Vesta

● Tools run during a Vesta build have their context
defined by an SDL program
– The command line
– The complete filesystem (see chroot(2))
– The environment variables
– The standard input

● All these details are parameters to the SDL
_run_tool primitive function

3Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Tools under Vesta

● Setting up the context for a tool can be
complicated
– Tool executable file (for the right platform)
– Run-time libraries, config files, etc. the tool needs
– Placing the input files

● Vesta enforces precision (which is good)
● But users aren't interested in the details

4Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Bridge = Abstraction

● A bridge is a collection of SDL functions that
simplify running one more tools
– “Bridges the gap” between the operation the user is

interested in and the low-level details needed to carry
it out

● Usually multiple bridges are gathered together
into a build environment
– A collection of different operations the user might

need

5Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Good Bridge Design

● Don't assume the filesystem is set up by the caller
– Bridge function that runs a tool should add any files it

needs (e.g. executable, run-time libraries, etc.)
– For efficiency it's sometimes best to set up the

filesystem once then run the tool multiple times
● Primary inputs should be parameters to bridge

functions
– Input files
– Type of output/processing

6Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Good Bridge Design

● Separate the SDL code from platform-specific
files (executables, run-time libraries, etc.)
– Possible to share bridge code across multiple

platforms (e.g. x86 Linux, x86-64 Linux, Solaris)
– Upgrade tool versions and change bridge code

independently
– Requires additional abstraction: bridge gets

specialized to a particular platform with parameters
by the build environment

7Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Good Bridge Design

● Provide abstract bridge options for choices the
user may want to make less often
– Choices that affect multiple things
– Anything likely to change between platforms

● Provide a way for the user to add arbitrary
command-line switches to a tool
– Handles situations the bridge writer didn't consider
– Sufficient in many cases (e.g. “-DMACRO” for

C/C++)

8Ken Schalk / Writing Vesta Bridges

www.vestasys.org

grep Bridge

● As an example, we'll write a bridge for a
relatively simple tool: grep

● We'll use 3 Vesta packages for:
1. The platform-specific files (the grep executable)
2. The SDL bridge code
3. An example of how to use the bridge

9Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Getting the Executable

● Most modern operating systems use a packaging
system to manage installed components
– RedHat Linux uses the RedHat Package Manager (or

RPM)
– Debian Linux uses a different package manager

● Each installed OS component package is made up
of some set of files

● Package files (.rpm/.deb) contain the files and
all information needed to install a package

10Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Getting the Executable

● To see the files in the grep package installed on
Linux:
– RedHat: rpm -ql grep
– Debian: dpkg -L grep

● To get the files in the grep package into Vesta,
we use the pkg2vesta.pl script
– See: /vesta/vestasys.org/vesta/extras/pkg2vesta

11Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Running pkg2vesta.pl

pkg2vesta.pl --from-installed \
--package-root /vesta/example.com \
grep

– Creates the correct directory, package, branch
– Checks out the branch
– Fills the working copy with the files from the

installed package plus SDL files and information
about what was done

● If you have a package file (.rpm/.deb), don't use
--from-installed

12Ken Schalk / Writing Vesta Bridges

www.vestasys.org

What pkg2vesta.pl Made

● root

– Partial filesystem with all files from this package
● root.ves

– Returns the filesystem
● build.ves

– Returns the OS component ready for use
● README

– What was imported, command-line options

13Ken Schalk / Writing Vesta Bridges

www.vestasys.org

If you Don't Have a .rpm/.deb

● You may not have a piece of software packaged
for your OS:
– It's being locally developed
– It's only provided as source code for compilation
– It was provided from a vendor in another form

● If you only have binaries, consider imitating the
structure pkg2vesta.pl creates

● If you have source, consider compiling on
demand under Vesta

14Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge
{
 // Search for pattern in file
 grep(pattern: text, file: text): text
 {
 // Add the root for the tool and an empty working directory
 . += [root = [.WD=[]] + ./build_root(<"grep">)];

 // Build a command line
 cmd = <"grep", pattern>;

 // Run the tool
 r = _run_tool(./target_platform, cmd,
 // Pass file as standard input
 file,
 // Capture standard output as a value
 "value");

 return (if r == ERR || r/signal != 0 then ERR
 else r/stdout);
 };

 // The bridge model returns this binding.
 return [grep = [grep]];
}

15Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details
grep(pattern: text, file: text): text

– Defines a function named “grep”
– First argument “pattern” will be the pattern to

search for
– Second argument “file” will be the text to search
– The function result will be the output of grep: the

lines in “file” containing “pattern”
– Both arguments and the result are type text
– Like all SDL functions, this has a final implicit

argument named “.”

16Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details
. += [root = [.WD=[]] + ./build_root(<"grep">)];

– Augments the value of “.” with the binding overlay
assignment operator (+=)

– Replaces “./root” with a new binding made by
combining two bindings with the overlay operator (+)

[.WD=[]]

– An empty binding (i.e. directory) named “.WD”
– This is the default working directory when running a

tool.

17Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details

./build_root(<”grep”>)

– Calls the function “./build_root” passing a list
with a single element: the text string "grep"

– ./build_root is a convention used by build
environments to make it easier to construct a root
filesystem out of several OS component packages

– We just want the “grep” component we imported
with pkg2vesta.pl, so that's all we ask for

18Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details

cmd = <"grep", pattern>;

– Create a two element list holding:
● The text string "grep"
● The value of the “pattern” argument

– Store it in a variable named “cmd”
– This will be the command line we execute as a tool

19Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details
r = _run_tool(./target_platform, cmd, file, "value");

– This is where we actually run the tool
– The first parameter to _run_tool is the system type

to run the tool on. We pass ./target_platform.
– The second argument is the command line from our

variable cmd
– The third argument is the standard input stream from

the argument file
– The fourth argument is what to do with the standard

output. We ask for it to be captured as a value.

20Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details

● How is the filesystem passed?
– In ./root
– Like other functions, _run_tool takes “.” as a

final parameter, automatically from the calling
context

– We don't explicitly pass the filesystem, but
_run_tool gets the value of “.” implicitly,
including the ./root we set earlier

21Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details

● How are the environment variables passed?
– In ./envVars
– Just like the filesystem, environment variables are

passed through “.”
– We didn't set any here, but there might be some

passed in as part of “.” from the caller of our grep
function

22Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details
return (if r == ERR || r/signal != 0 then ERR
else r/stdout);

– After _run_tool finishes, we want to return the
standard output of the tool

– First we check for a couple possible error cases
indicating that the tool failed and return ERR if it did

– If all seems well, we return “r/stdout”

23Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Details

return [grep = [grep]];

– The result of the bridge model is a binding meant to
be made part of the “.” used by client models

– The binding contains the name “grep” with a
binding value

– The grep sub-binding contains our grep function
with its own name

● Remember “[x]” is equivalent to “[x=x]”
– So users will get our function with ./grep/grep

24Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Simple Bridge Usage Example
files
 // Sample text file to grep
 sample;
{
 // Find any lines containing the letter "a" in
 // sample. Put the result in a file named
 // "sample.out"
 return [
 sample.out = ./grep/grep("a", sample)
];
}

25Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Putting The Pieces Together

● We now have several different pieces:
– A package containing the grep binary we imported

with pkg2vesta.pl
– A package containing our bridge build.ves
– A package containing our example usage
build.ves

● To put them together, we need a platform-
specific top-level model:
linux_i386.main.ves

26Ken Schalk / Writing Vesta Bridges

www.vestasys.org

linux_i386.main.ves

import
 self = build.ves;
from /vesta/vestasys.org/platforms/linux/redhat/i386 import
 std_env/9;
from /vesta/example.com/platforms/linux/redhat/i386/components import
 grep/"2.4.2-5"/1; // Our grep binary package
from /vesta/example.com/bridge_intro import
 grep_bridge/1; // Our grep bridge
{
 // Build the basic environment.
 . = std_env()/env_build([]);

 // Add the grep OS component package
 . ++= [components = grep()];

 // Add the grep bridge
 . ++= grep_bridge();

 return self();
}

27Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Details

import

 self = build.ves;

– The top-level model is in the same package as our
example build.ves which calls ./grep/grep

– This imports the example build.ves, putting it in a
variable named “self”

– We'll call it once we've set up everything we need for
the example to work

28Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Details
from /vesta/vestasys.org/platforms/linux/redhat/i386 import

 std_env/9;

– This gets the basic build environment for i386 Linux
● It's based on RedHat 7.1, essentially a “lowest common

denominator” environment
– It imports it into a variable named std_env

● When an import doesn't contain “=”, the variable name is
the first path component

– We'll use this for some basic things
(./build_root among others) and augment it

29Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Details
from /vesta/example.com/platforms/linux/redhat/i386/components import

 grep/"2.4.2-5"/1; // Our grep binary package

– This gets the binary package we created with
pkg2vesta.pl

– It imports into a variable named “grep”
– We need to quote the path component with the grep

version number, because it contains “-”
● Any path components containing characters other than

letters, numbers, “.” and “_” must be quoted
● Also, any path components matching reserved words must

be quoted

30Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Details
from /vesta/example.com/bridge_intro import

 grep_bridge/1; // Our grep bridge

– This gets the build.ves for our grep bridge
– It imports it into a variable named “grep_bridge”

. = std_env()/env_build([]);

– This creates the basic build environment
● Calls the std_env model
● Looks up the name env_build in its result and calls it as

a function
● Puts the result in “.”

31Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Details

. ++= [components = grep()];

– This adds our grep binary to the set of OS component
packages stored in ./components

– After this, ./build_root will be able to build a
filesystem including the grep OS component

. ++= grep_bridge();

– This adds our grep bridge to “.”
return self();

– Now that everything is set, call our example

32Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Call Graph of Example

linux_i386.main.ves

std_env/9/build.ves

env_build

grep/2.4.2-5/0/build.ves

build.ves
(usage example)

./components/grep/root

./build_root

_run_tool

grep_bridge/1/build.ves

./grep/grep

std_env
Example

grep Binary
grep Bridge
Primitive

33Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Call Graph of Example

linux_i386.main.ves

std_env/9/build.ves

env_build

grep/2.4.2-5/0/build.ves

build.ves
(usage example)

./components/grep/root

./build_root

_run_tool

grep_bridge/1/build.ves

./grep/grep

. = std_env()/env_build([]);

. ++= [components = grep()];

. ++= grep_bridge();

34Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Call Graph of Example

linux_i386.main.ves

build.ves
(usage example)

./components/grep/root

./build_root

_run_tool

./grep/grep

return self();

return [
 sample.out = ./grep/grep("a", sample)
];

35Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Call Graph of Example

linux_i386.main.ves

build.ves
(usage example)

./components/grep/root

./build_root

_run_tool

./grep/grep

./build_root(<"grep">)

root.ves created
by pkg2vesta.pl

_run_tool(./target_platform, cmd, file, "value");

36Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Construction of Dot (.)

 .

build_root

 components

gcc

libstdc++

1.Basic . comes from
std_env
. = std_env()/env_build([]);

std_env

grep Binary
grep Bridge

37Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Construction of Dot (.)

 .

build_root

 components

gcc

libstdc++

grep

1.Basic . comes from
std_env
. = std_env()/env_build([]);

2.We add our grep OS
component
. ++= [components = grep()];

std_env

grep Binary
grep Bridge

38Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Construction of Dot (.)

 .

build_root

 components

gcc

libstdc++

grep

grep

grep

1.Basic . comes from
std_env
. = std_env()/env_build([]);

2.We add our grep OS
component
. ++= [components = grep()];

3.We add our grep bridge
. ++= grep_bridge();

std_env

grep Binary
grep Bridge

39Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Data Flow in linux_i386.main.ves
linux_i386.main.ves std_env/9

[env_build=<function>]

1.std_env returns
env_build

40Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Data Flow in linux_i386.main.ves
linux_i386.main.ves std_env/9

[env_build=<function>]

1.std_env returns
env_build

2.env_build returns initial
dot

[build_root=<function>,
 components=[gcc,libstdc++,..],
 ...]

.

41Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Data Flow in linux_i386.main.ves
linux_i386.main.ves std_env/9

[env_build=<function>]

1.std_env returns
env_build

2.env_build returns initial
dot

3.grep OS component
model returns OS
component (added to
./components)

[build_root=<function>,
 components=[gcc,libstdc++,..],
 ...]

grep/2.4.2-5/0

[grep=[
 root=<function>,
...]]

.

42Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Data Flow in linux_i386.main.ves
linux_i386.main.ves std_env/9

[env_build=<function>]

1.std_env returns
env_build

2.env_build returns initial
dot

3.grep OS component
model returns OS
component (added to
./components)

4.grep bridge returns bridge
binding containing bridge
function (added to dot)

[build_root=<function>,
 components=[gcc,libstdc++,..],
 ...]

grep/2.4.2-5/0

[grep=[
 root=<function>,
...]]

.

grep_bridge/1

[grep=[
 grep=<function>
]]

43Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Evaluating The Example

● When we try to evaluate our example, something
seems to be wrong:

% vmake
Advancing to /vesta/example.com/bridge_intro/grep_example/checkout/1/1
Vesta evaluator, version release/12.pre13/5

0/hostname: grep a
0/Error: invoking _run_tool: /usr/sbin/tool_launcher: Execve failure, No such

file or directory (errno = 2)
 Possible cause: perhaps tool pathname is invalid or file system is

incomplete?

One error was reported.
Vesta evaluation failed.

● Now we'll need to investigate
– This is often part of writing a new bridge

44Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Investigating The Problem

● We'll start by adding -fsdeps to the vmake
command line:

% vmake -fsdeps
[...]
0/hostname: grep a
FS dependency: !/./root/.WD/grep
FS dependency: N/./root/bin/grep
FS dependency: !/./root/lib
FS dependency: !/./root/usr
0/Error: invoking _run_tool: [...]

● This tells us that the tool is looking for some
paths which don't exist:
– /lib

– /usr

45Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Investigating The Problem

● Why dont't /lib and /usr exist when the tool
is running?
– We specified its complete filesystem in ./root

before calling _run_tool
– We only asked ./build_root for the grep OS

component
– Perhaps the grep OS component with imported with
pkg2vesta.pl doesn't have these directories?

46Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Investigating The Problem

● Let's see what we imported:
% ls -lR /vesta/example.com/platforms/linux/redhat/i386/components/grep/2.4.2-5/1/root
/vesta/example.com/platforms/linux/redhat/i386/components/grep/2.4.2-5/1/root:
total 1
dr-xr-xr-x 1 ken root 512 May 27 14:43 bin

/vesta/example.com/platforms/linux/redhat/i386/components/grep/2.4.2-5/1/root/bin:
total 156
-r-xr-xr-x 1 ken root 49244 May 27 14:43 egrep
-r-xr-xr-x 1 ken root 49244 May 27 14:43 fgrep
-r-xr-xr-x 1 ken root 49244 May 27 14:43 grep

● Sure enough, no /lib or /usr

47Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Investigating The Problem

● The /lib and /usr directories are probably not
enough by themselves
– The tool was probably looking for something inside

one of those directories
– Unfortunately, we don't know what
– We could add empty /usr and /lib directories and

run with -fdeps again to get more information
● Since it's looking for /lib, it's a good bet that

it's a missing run-time library

48Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Investigating The Problem

● Let's see what shared libraries our imported
grep needs:

% cd /vesta/example.com/platforms/linux/redhat/i386/components/grep/2.4.2-5/1/root
% ldd bin/grep
 libc.so.6 => /lib/libc.so.6 (0x40025000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

● grep must be looking for the C run-time library
(libc.so)
– Most programs need this to run
– We need to ask ./build_root to include this for

us when we call it

49Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Fixing The Problem

● The name of the component with libc.so is
“glibc”
– This name is specific to the OS packaging system's

naming convention, and may be different for other
platforms

● To fix the problem, we'll change this:
– ./build_root(<"grep">)

● To this:
– ./build_root(<"grep", "glibc">)

50Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Switches

● Suppose the caller wants to pass additional
command-line flags to grep
– -v to invert the match
– -i for case-insensitive
– -n to show line numbers

● Let's add code to allow users to add command-
line switches to our grep invocation

51Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Switches

● Define a place for users to supply switches as part
of the bridge result:
 // Optional command-line switches
 switches = [];

 // The bridge model returns this binding.
 return [grep = [grep, switches]];

● This is similar to other standard bridges
● Users will add switches like:

. ++= [grep/switches/invert = "-v"];

52Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Switches

● Inside the grep function, we'll incorporate the
switches into the command line:
 // Build a command line

 cmd = (<"grep"> +

 ./generic/binding_values(./grep/switches) +

 <pattern>);

● This uses a function from:
/vesta/vestasys.org/bridges/generics

53Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Usage Example with Switches

● Let's use a switch in build.ves:
files
 // Sample text file to grep
 sample;
{
 // Ignore case when using grep
 . ++= [grep/switches/nocase = "-i"];

 // Find any lines containing the letter "a" or "A"
 // in sample. Put the result in a file named
 // "sample.out"
 return [
 sample.out = ./grep/grep("a", sample)
];
}

54Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Switches vs. Abstract Options

● We could instead create boolean options for these
different grep capabilities:
. ++= [grep/options/nocase = TRUE];

. ++= [grep/options/invert = TRUE];

● We'd translate these abstract options into
concrete switches in the bridge code

● This would be a good idea for complex options or
options which use different command-line
switches on different platforms

55Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Multiple Files

● What if we have multiple input files?
– The user could call ./grep/grep multiple times
– The bridge could support multiple files

● Let's add support for multiple input files
– The input will be a binding rather than a single text

value
– We'll use the _par_map primitive function to

process the inputs

56Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Handling Multiple Files
 grep(pattern: text, /**pk**/inputs: NamedFiles): text
 {
 // Add the root for the tool and an empty working directory
 . += [root = [.WD=[]] + ./build_root(<"grep", "glibc">)];

 // Build a command line
 cmd = (<"grep"> +

 ./generic/binding_values(./grep/switches) +
 <pattern>);

 /**nocache**/
 grep_one(name, file)
 // Inner function that runs the tool for a single input file.
 {
 // Run the tool
 r = _run_tool(./target_platform, cmd,
 // Pass file as standard input
 file,
 // Capture standard output as a value
 "value");

 return (if r == ERR || r/signal != 0 then ERR
 else [$name = r/stdout]);
 };

 return _par_map(grep_one, inputs);
 };

57Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Details of Handling Multiple Files
grep(pattern: text, /**pk**/inputs: NamedFiles): text

– The second argument is marked with “/**pk**/” to
tell the evaluator that the function's result will always
depend on the complete value of this argument

● This helps make caching more efficient
– The type “NamedFiles” means a binding whose

values are all of type text
● In other words, a directory that contains files but no

subdirectories
● See the vtypes(5) man page

58Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Details of Handling Multiple Files
// Add the root for the tool and an empty working directory
. += [root = [.WD=[]] + ./build_root(<"grep", "glibc">)];

// Build a command line
cmd = (<"grep"> +
 ./generic/binding_values(./grep/switches) +
 <pattern>);

– We set up the filesystem and command line once,
sharing it across all the individual grep runs

– Note that “cmd” gets captured from the definition
context of the inner function, but the new value of “.”
gets passed as a parameter (through _par_map)

59Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Details of Handling Multiple Files
/**nocache**/
grep_one(name, file)

– We define an inner function which will run grep once
for each input file

– It must take two arguments (a name and a value) since
we're going to use it with _par_map over a binding

– We mark this function with “/**nocache**/” to
suppress caching it

● _run_tool is always cached, and this function doesn't do
much besides call _run_tool, so there's no point in
caching it

60Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Usage Example with Multiple Files

● We changed the parameters to our function, so
we need to update our build.ves:

files
 // Sample text files to grep
 inputs = [sample1, sample2];
{
 // Find any lines containing the letter "a" in
 // our input files. (The bridge puts the results
 // in files with the same names as the inputs.)
 return ./grep/grep("a", inputs);
}

61Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Finishing Touches: Generalization

● There are several things hard-coded in our bridge:
– The command name (“grep”)
– The method for getting the root filesystem
– The bridge name in the result (“grep”)

● What if we wanted separate bridges for fgrep
and egrep?

● Let's add bridge specialization parameters to
remove these hard-coded parts

62Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Bridge Parameters

● At the beginning of the bridge model, we'll add
code which saves parameters from the value of
“.” when the bridge model is called
 // The command to invoke. (Optional parameter; defaults to "grep".)
 command = if .!command then ./command else "grep";

 // The root filesystem to use for this platform (which must include
 // the executable named by "command").
 root = ./root;

 // The name of this bridge. (Optional parameter; defaults to
 // "grep".)
 bridge_name = if .!bridge_name then ./bridge_name else "grep";

63Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Bridge Parameters

● The value of “.” must be a binding containing
the named parameters

● We have default values for command and
bridge_name, using them if the caller didn't
supply them

● The variables created here will be used below
– Note that the definition of our function will capture

these variables so they can be used when it is called

64Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Bridge Parameters

● Inside our grep function, we'll use the command
and root variables:
 // Add the root for the tool and an empty working directory
 . += [root = [.WD=[]] + root()];

 // Build a command line
 cmd = <command, pattern>;

● This assumes that:
– root is a function which will return the root

filesystem
– command is a text value

65Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Bridge Parameters

● At the end of the bridge model, we'll use
bridge_name to change the name used in the
binding returned:
 // The bridge model returns this binding.
 return [$bridge_name = [grep, switches]];

● This assumes that bridge_name is a text value

66Ken Schalk / Writing Vesta Bridges

www.vestasys.org

New linux_i386.main.ves
import
 self = build.ves;
from /vesta/vestasys.org/platforms/linux/redhat/i386 import
 std_env/9;
from /vesta/example.com/platforms/linux/redhat/i386/components import
 grep/"2.4.2-5"/1; // Our grep binary package
from /vesta/example.com/bridge_intro import
 grep_bridge/1; // Our grep bridge
{
 // Build the basic environment.
 . = std_env()/env_build([]);

 // Add the grep OS component package
 . ++= [components = grep()];

 // Add the grep bridge
 bridge_args = [command = "grep", bridge_name = "grep",
 root = ./build_root_delayed(<"grep", "glibc">)];
 . ++= grep_bridge(bridge_args);

 return self();
}

67Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Top-level Model Changes
bridge_args = [command = "grep", bridge_name = "grep",

 root = ./build_root_delayed(<"grep", "glibc">)];

– This sets up the bridge specialization arguments
– ./build_root_delayed is like
./build_root, but it returns a function which will
build the root filesystem later

. ++= grep_bridge(bridge_args)

– This passes the arguments to the bridge model as “.”
● Remember: imported models have one implicit argument

which is “.”

68Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Learning More

● Examples from this presentation can be found in:
– /vesta/vestasys.org/examples/bridge_intro

– See the README file for some suggested exercises
● The lex bridge dissection in the SDL reference

is another document which can help you learn
about bridge writing:
http://www.vestasys.org/doc/sdl-ref/bridge-dissection.html

http://www.vestasys.org/doc/sdl-ref/bridge-dissection.html

69Ken Schalk / Writing Vesta Bridges

www.vestasys.org

Learning More

● The full documentation of the _run_tool
primitive function describes capabilities not
covered here:
http://www.vestasys.org/doc/sdl-ref/primitive-functions/_run_tool.html

● Read the code of std_env and other bridges
– There's no special magic: it's all just a library

of SDL code for calling _run_tool, and
now you've seen how it works

http://www.vestasys.org/doc/sdl-ref/primitive-functions/_run_tool.html

